
MATHEMATICS

ENZYME INHIBITION

Competitive inhibition

 K_{M} increased V_{max} unaffected

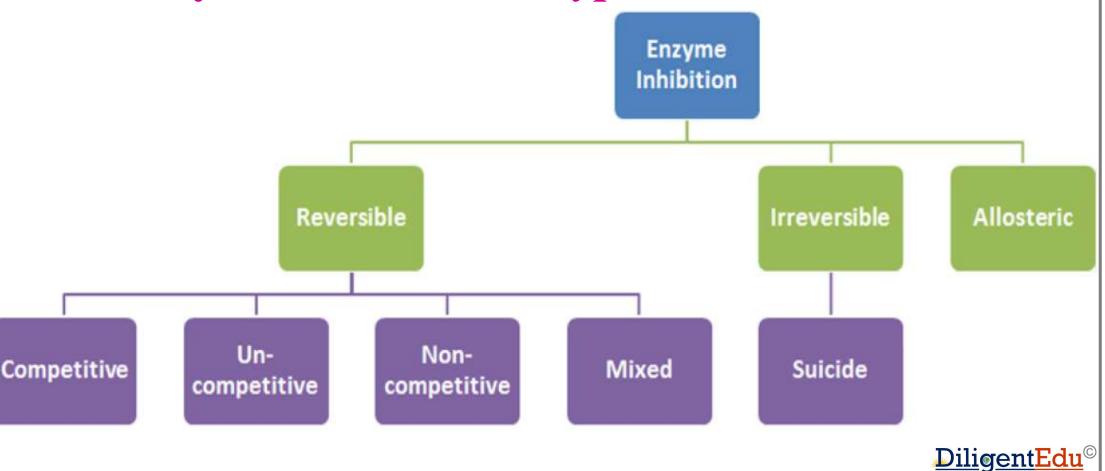
Uncompetitive inhibition

 $K_{\rm M}$ reduced $V_{\rm max}$ reduced

Noncompetitive inhibition

K_M unaffected V_{max} reduced

source: Biochemistry, epathshala, A Gateway to All Post Graduate Courses, MHRD



■ Introduction — Enzyme Inhibition

An enzyme catalyzed reaction can be hindered or reduced by a number of substances. Some others like **urea** are known as *denaturants*, being *non-specific* in their mode of action. But if any compound act in a fairly specific way in inhibiting the catalysis of a particular enzyme they are called inhibitors.

Enzyme Inhibition - Types

- Enzyme Inhibition Types
- The loss in activity can either be of two types -
- (1) Reversible where the activity can be restored by the removal of the inhibiting compound. It's temporary.
- (2) Irreversible where the loss of activity cannot be recovered within the stipulated time of interest. It is permanent. ...

Enzyme Inhibition - Types

... Irreversible inhibition behave as time dependent loss of enzyme concentration with lowered V_{max} or incomplete in activation with time dependent change in both K_m and V_{max} .

• • •

Enzyme Inhibition - Types

... Heavy metal ions like mercury, lead etc. cause irreversible inhibition, which bind strongly to the amino acid backbone termed as "suicide inhibition".

- Studying Enzyme Inhibition Mechanisms
 There are several reasons behind the need for studying enzyme inhibition mechanisms.
 They are —
- Exploring potential mechanisms in multisubstrate reactions.
- Studying the relative binding affinity of competitive inhibitors to the enzyme active ...

- Studying Enzyme Inhibition Mechanisms
 There are several reasons behind the need for studying enzyme inhibition mechanisms.
 They are —
- ... site, in the absence of 3-D structure information.
- For understanding various control mechanisms how the balance of protease ...

- Studying Enzyme Inhibition Mechanisms
 There are several reasons behind the need for studying enzyme inhibition mechanisms.
 They are —
- ... enzymes and their inhibitors in tissues achieve homeostasis.
- For various commercial applications like pesticide, insecticide, weed-killers, pharmaceutical compounds like drugs etc.

Reversible Inhibition

In this type of inhibition, the *hindrance* is temporary and thus noncovalent interactions like hydrogen bonds, ionic bonds hydrophobic bonds form between inhibitors and the enzyme. Even though these are weak bonds, multiple such bonds cause strong and specific binding.

Reversible Inhibition

... Despite absence of any chemical reactions, the inhibitors can easily remove or exchange by dilution or dialysis. After removing the inhibitor, enzyme can be fully restored in reversible inhibition. Equilibrium is established between free inhibitor and enzyme-inhibitor [EI] complex (Figure 2).

Reversible Inhibition

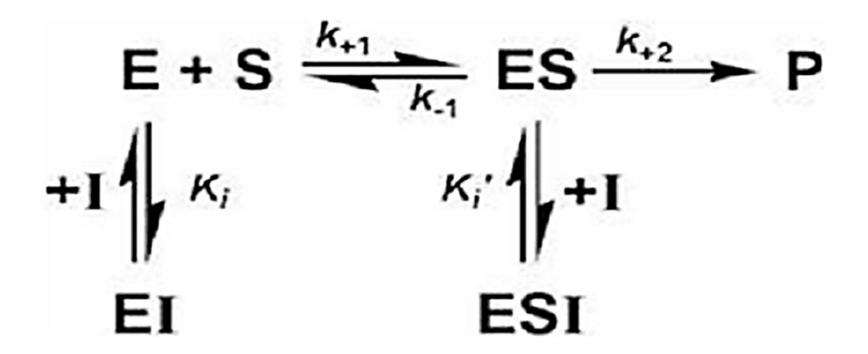
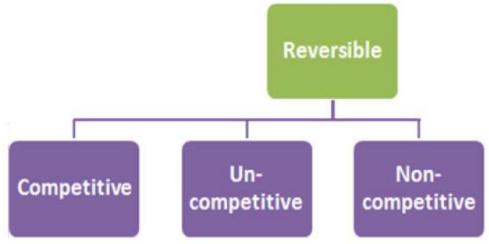



Figure 2. Mechanism of reversible inhibition

Reversible Inhibition - Types

Reversible inhibitions are of different types. The classification is **based** according to the effect of varying the concentration of the enzyme's substrate on the inhibitor.

Competitive Inhibition

In this type of reversible inhibition, both the substrate and its inhibitor *cannot bind* to the enzyme at the same time to the allosteric / active site. This normally occurs due to the structural similarity of substrate and the inhibitor, which results with affinity for the active site....

Competitive Inhibition

... The inhibition can be recovered by the presence of high concentration of substrate, outcoming the competing inhibitor. V_{max} of the reaction is unchanged, while k_d , dissociation constant is apparently increased. Competitive inhibitors can also be used to find the enzyme active site.

Competitive Inhibition

Example-1: N-(Phosphonoacetyl)-L-asparate also known as **PALA** is a **competitive inhibitor** for *Aspartate Transcarbamoylase*.

Example-2: Malonate is a competitive inhibitor of enzyme *succinate dehydrogenase*, and *competes with succinate*.

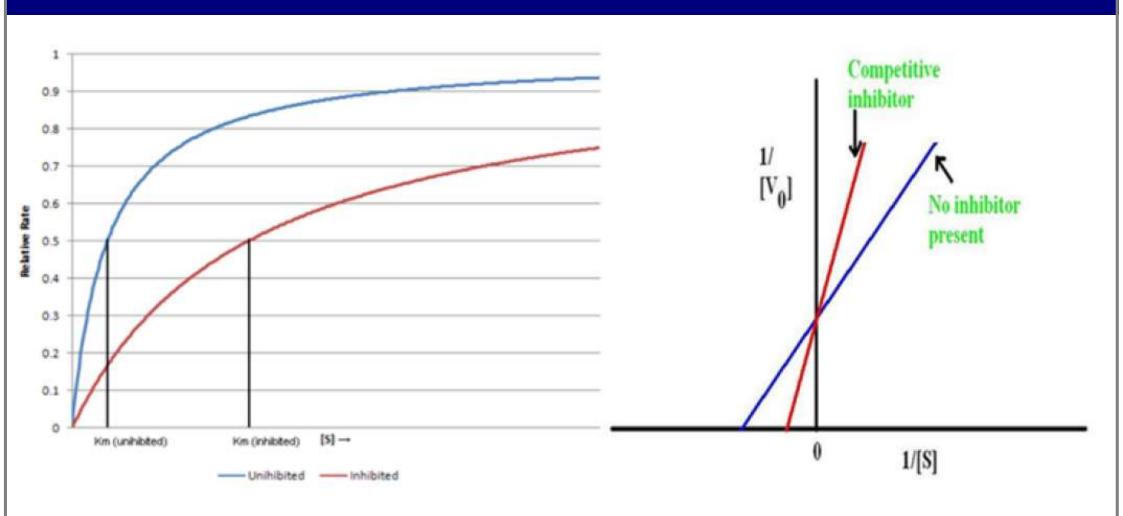


Figure 3. Kinetics of competitive inhibition DiligentEdu®

Table 1. Clinical use of competitive inhibition

Drugs	Target Enzyme	Therapeutic use
STATINS, Atorvastatin	HMG CoA reductase	Involved in the reduction
Simvastatin		of plasma cholesterol
		level- Anti-hyperlipidemic
		agents
Allopurinol	Xanthine oxidase	Used in case of prevention of gout attacks
Methotrexate	Dihydrofolate reductase	Used as canecr treatment
		drug
Captopril, Enalapril	Angiotensin converting	Treatment of high blood
	enzyme	pressure
Discoumarol	Vit K-epoxide reductase	Used as an anti-coagulant

Uncompetitive Inhibition

It's an anti-competitive inhibition; where the inhibitor binds only to the substrate-enzyme complex. According to its kinetics, V_{max} and K_m decrease. This type of inhibition works best in case of high concentration of the *substrate*. The substrate and the uncompetitive inhibitor does not resemble each other. Example - Lithium and phosphoinositide cycle. DiligentEdu®

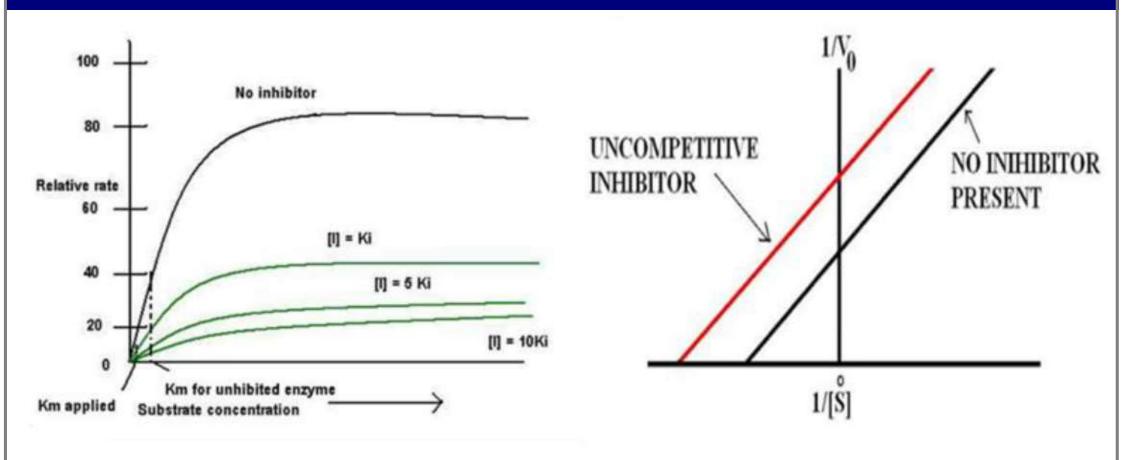


Figure 4. Kinetics of un-competitive inhibition

Non-Competitive Inhibition

A non-competitive inhibitor is one which reacts with enzyme-substrate or [ES] complex. It does not affect the binding of the substrate, but slows down the reaction rate for formation of the enzyme-product [EP] complex. ...

Non-Competitive Inhibition

... The only factor on which the extent of hindrance or inhibition **depends** is the **inhibitor concentration**. There will be a *decrease* in V_{max} but K_m will remain the *same*.

Example: Alanine non competitively inhibits the enzyme pyruvate kinase.

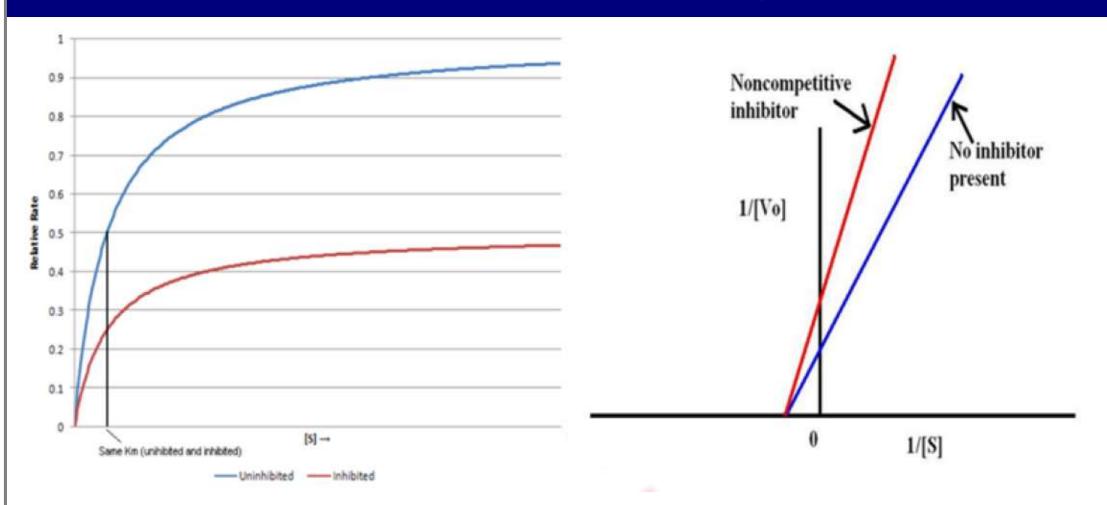
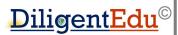



Figure 5. Kinetics of non-competitive inhibition

Table 2. Examples of common non-competitive inhibitors

Inhibitor	Enzyme inhibited	
Heavy metals – Ag ²⁺ , Hg ²⁺ , Pb ²⁺	Heavy metals bind with cysteinyl SH	
	group of enzyme	
Pepstatin	Pepsin	
Soybean trypsin inhibitor	Trypsin	
Ethanol/narcotic drugs	Acid phosphatase	

Mixed Inhibition

In this type of inhibitor, **inhibitor** is capable of binding to both free enzyme as well as enzyme-substrate complex. In this case, V_{max} and K_{max} varies. Mixed inhibitor binds to the allosteric site. This type of inhibition cannot by increasing substrate overcome concentration S, but can be reduced. ...

Mixed Inhibition

... The inhibitor binding to the *allosteric site* changes the structural confirmation to reduce the *affinity* of the substrate.

Example: Mixed inhibition is observed on case of *oxidoreductase activity* of *Xanthine oxidase* by Pd²⁺ ion.

$$\frac{1}{v} = \frac{ks}{v \max} \left(1 + \frac{[I]}{ki}\right) \frac{1}{[S]} + \frac{1}{v \max} \left(1 + \frac{[I]}{\alpha ki}\right)$$

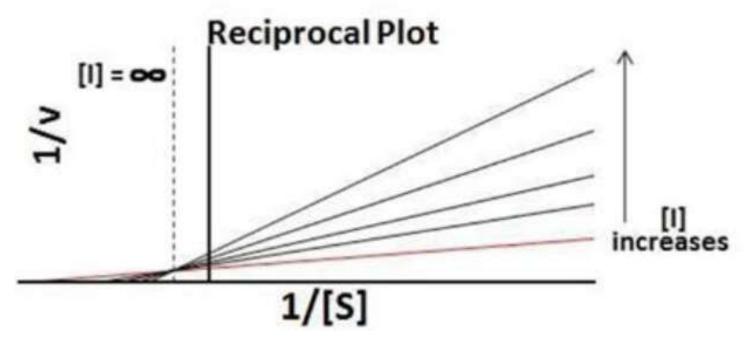


Figure 6. Kinetics of Mixed Inhibition

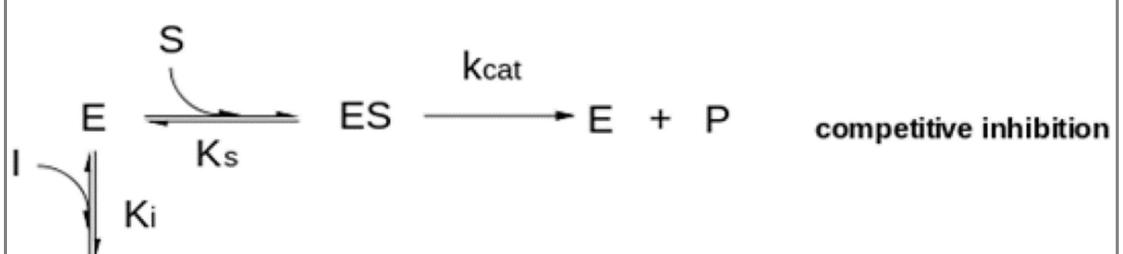
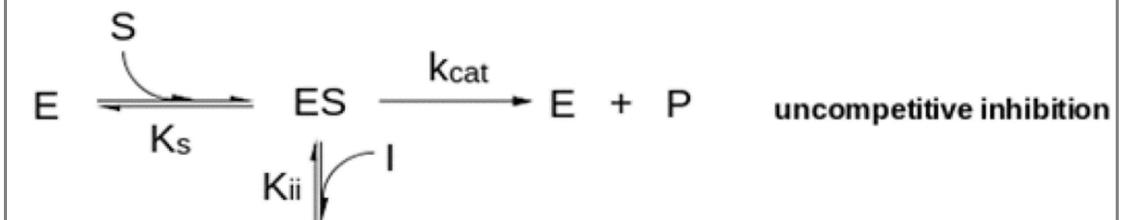



Figure 7. Different types of reversible inhibitions

EIS

Figure 7. Different types of reversible inhibitions

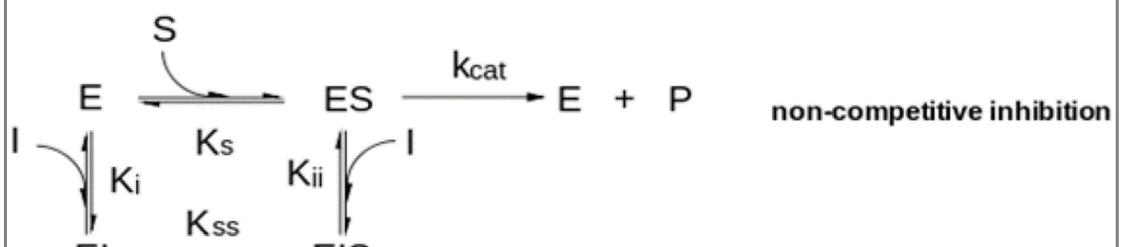


Figure 7. Different types of reversible inhibitions

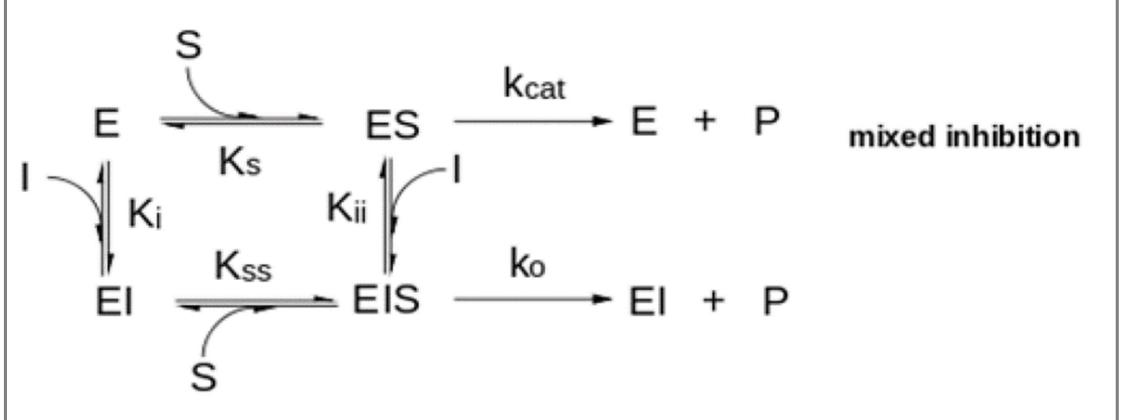


Figure 7. Different types of reversible inhibitions

Irreversible Inhibition

In this type of inhibition, the hindrance is of permanent nature by modifying enzyme covalently. These types of inhibitors often contain electrophilic functional groups fluorophosphates, aldehydes, haloalkanes, alkenes, nitrogen mustards, phenyl sulfonates, Michael acceptors etc., which react with amino acid side chains having nucleophilic residues. DiligentEdu[©]

Irreversible Inhibition

These inhibitors are **very specific** in the mechanism of inactivation for a particular class of enzyme. They do irreversible *inhibition by specially altering the active site*. They display **inhibition which is time-dependent**. ...

Irreversible Inhibition

... Their **potency** cannot be characterized by IC_{50} value. These inhibitors *increase* K_m and *decrease* V_{max} .

Example: Di isopropyl flurophosphate (**DFP**) is an irreversible **protease inhibitor**.

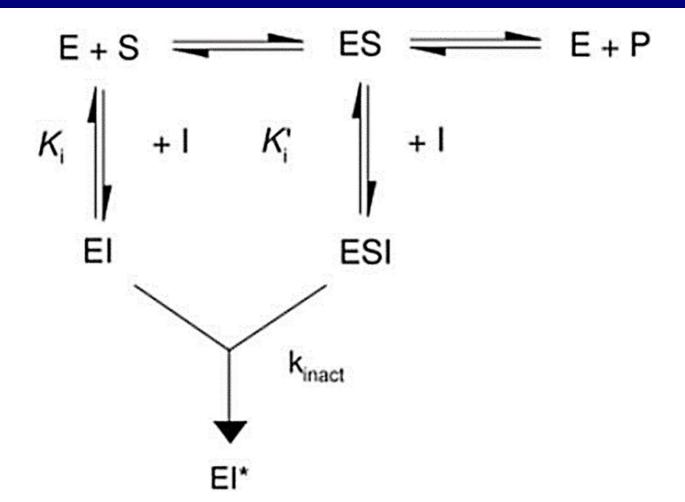


Figure 8. Kinetics of irreversible inhibition

Table 3. Therapeutic uses of irreversible inhibitors.

Inhibitors	Enzyme inhibited	Therapeutic uses
Disulfiram	Aldehyde dehydrogenase	Treats alcoholism
Cyanide ions	Cytochrome oxidase	Inhibition of the respiratory
		chain
Fluoride ions	Enolase	Inhibition of Glycolysis
Melathion	Acetyl choline esterase	Used as an
		organophosphorus
		insecticide
Di-isopropyl	Serine proteases, Acetyl	Used as a nerve gas
fluorophosphate	choline esterase	
British Anti Lewisite (BAL)	Reaction with the thiol (-SH)	Used as an antidote in case
	group of the enzyme	of poisoning due to heavy
		metal

Table 3. Therapeutic uses of irreversible inhibitors.

Inhibitors	Enzyme inhibited	Therapeutic uses	
Disulfiram	Aldehyde dehydrogenase	Treats alcoholism	
Cyanide ions	Cytochrome oxidase	Inhibition of the respiratory	
		chain	
Fluoride ions	Enolase	Inhibition of Glycolysis	
Melathion	Acetyl choline esterase	Used as an	
		organophosphorus	
		insecticide	
Di-isopropyl	Serine proteases, Acetyl	Used as a nerve gas	
fluorophosphate	choline esterase		
British Anti Lewisite (BAL)	Reaction with the thiol (-SH)	Used as an antidote in case	
	group of the enzyme	of poisoning due to heavy	
		metal	

Suicide inhibition

This is another type of *irreversible inhibition*. In this case, the target **enzyme converts** the **inhibitor compound into a reactive form** in its **active site**. They are also known as mechanism based inhibitors or transition state analogs.

Suicide inhibition

Example: **DFMO** [α -difluromethyl ornithine], an analogue of *ornithine* inhibits *ornithine* decarboxylase.

Example: Allopurinol is a suicide inhibitor of xanthine oxidase

Example: Aspirin inhibits cyclooxygenase.

Table 4. Therapeutic uses of suicide inhibitors

Drugs	Product	Target Enzyme	Therapeutic use
Allopurinol	Alloxanthin	Xanthine oxidase	Treatment of gout
5-Fluorouracil	Fluoro-deoxy uridylate	Thymidylate synthase	Cancer treatment
Aspirin	Acetylates the serine	Cyclooxygenase	Used as a non-steroidal
	residue present in the		anti-inflammatory drug
	cyclooxygenase active		
	site		
Difluro methyl ornithine	Forms an irreversible	Ornithine	Used for treating
(DFMO)	covalent complex with	decarboxylase	Sleeping sickness
	the co-enzyme		(trypanosomiasis) <u>DiligentEdu</u> ©

Table 5. Differences between reversible & irreversible inhibitions

Reversible	Irreversible
Binds via non-covalent interactions	Binds via covalent interactions
Do not perform any chemical changes	Inhibitor binds to the substrate and prevent
	catalytic activity of enzymes
As there is no bonding between the inhibitor	Irreversibility due to strong covalent bonding
and substrate, reversible inhibition can be	
reversed,	

Allosteric Inhibition

Allosteric inhibition is a type of enzyme regulation, in which allosteric inhibitor binds to a site other than the active site of the enzyme. This *additional site* to which effector binds is called allosteric site. When these effectors bind to the protein, results with conformational change and ...

Allosteric Inhibition

... cause enhancement in activity is known as allosteric activators. When they decrease the activity of the protein, they are known as allosteric inhibitors. Allosteric enzymes are K or V types.

Models of Allosteric Regulation

The allosteric effects or mechanism is well described by the concerted MWC model, which was put forth by Monod, Wyman and Changeux. Another model called sequential model, proposed by Koshland, Nemethy and Filmer, also possibly explains the allosteric regulation. ...

- Models of Allosteric Regulation
- ... Both these models postulate that enzyme subunits exist in one two conformations tensed (T) or relaxed(R) states.

Concerted model

This model is known as symmetry or MWC model. According to this model, enzyme subunits exist in same conformation, they are connected and a conformational change in any one of the subunits is conferred to all other subunits of the enzyme. When any ligand or substrate is absent, the equilibrium favors towards either of the conformational states. Among the tensed and relaxed states, the 'R' state has higher affinity than 'T' state. The most successful application of this model is this regulation of hemoglobin. <u>DiligentEdu</u>

Sequential model

In contrary to Concerted model, **Sequential model** states that **enzymes subunits** are **not connected**, such that any **change** in the **enzyme conformation leads to induction** of a similar change in the others. When a subunit randomly collides with substrate, an **induced fit** converts a subunit from the **'T' state to 'R' state**.

Morpheein model

The third model is a **dissociative concerted model** known as **Morpheein model**. This is **physiologically significant homo-oligomeric tetramer structure**. Transition in the morpheein model are assisted by dissociation of oligomer, conformational change in dissociated state and reassembly of oligomers.

So far, one of the best characterized morpheein is the enzyme **porphobilinogen synthase**.

Types of Allosteric Regulation

There are mainly **two types** of allosteric regulation.

- Homotropic
- Heterotropic

Allosteric regulation

Homotropic

Heterotropic

<u>DiligentEdu</u>©

- Types of Allosteric Regulation
- Homotropic regulation: It's a positive modulation The modulator acts not only as a substrate but also as a regulatory molecule of the target enzyme.
- Example: O_2 and CO are homotropic allosteric modulator of **haemoglobin**.
- Heterotropic regulation: It can either be a positive or negative modulation. Here the modulator is a regulatory molecule but not an enzymes substrate.

Example: CO₂ is a heterotropic modulator of haemoglobin.

- Importance of enzyme inhibition
- Understanding regulation of enzyme activity in living cells.
- Elucidation of the cellular metabolic pathways by accumulation of intermediates.
- Helps in identification of catalytic or functional groups present at the enzyme active site.

- Importance of enzyme inhibition
- Helps in providing information on enzyme's substrate specificity.
- Helps in studying the mechanism of catalytic activity.
- Competitive or suicide inhibitors also find therapeutic applications.

Thank you!

www.YouTube.com/@DiligentEdu

DiligentEdu©